Stability by Krasnoselskii Fixed Point Theorem for Neutral Nonlinear Differential Equations with Variable Delays Abdelouaheb Ardjouni and Ahcene Djoudi

نویسندگان

  • A. Ardjouni
  • A. Djoudi
چکیده

We use Krasnoselskii’s fixed point theorem to obtain boundedness and stability results about the zero solution of a neutral nonlinear differential equation with variable delays. A stability theorem with a necessary and sufficient condition is given. The results obtained here extend and improve the works of C. H. Jin and J. W. Luo [12] and also those of [5, 9, 15]. In the end we provide an example to illustrate our claim. 2010 Mathematics Subject Classification: 34K20, 34K30, 34K40. Keys words and phrases: Fixed points, Stability, Nonlinear neutral differential equation, Integral equation, Variable delays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed Points and Stability in Neutral Nonlinear Differential Equations with Variable Delays

Abstract. By means of Krasnoselskii’s fixed point theorem we obtain boundedness and stability results of a neutral nonlinear differential equation with variable delays. A stability theorem with a necessary and sufficient condition is given. The results obtained here extend and improve the work of C.H. Jin and J.W. Luo [Nonlinear Anal. 68 (2008), 3307–3315], and also those of T.A. Burton [Fixed ...

متن کامل

Dynamic Systems and Applications 25 (2016) 253-262 STABILITY SOLUTIONS FOR A SYSTEM OF NONLINEAR NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH FUNCTIONAL DELAY

In this paper, we use the fixed point theorem to obtain stability results of the zero solution of a nonlinear neutral system of differential equations with functional delay. Application to the second-order model is given with an example. AMS (MOS) Subject Classification. 34K20, 34K40, 34A34, 35A08.

متن کامل

Fixed Points and Stability in Nonlinear Neutral Volterra Integro-differential Equations with Variable Delays

Abstract. In this paper we use the contraction mapping theorem to obtain asymptotic stability results of the zero solution of a nonlinear neutral Volterra integro-differential equation with variable delays. Some conditions which allow the coefficient functions to change sign and do not ask the boundedness of delays are given. An asymptotic stability theorem with a necessary and sufficient condi...

متن کامل

Periodicity and Stability in Nonlinear Neutral Dynamic Equations with Infinite Delay on a Time Scale

Let T be a periodic time scale. We use a fixed point theorem due to Krasnoselskii to show that the nonlinear neutral dynamic equation with infinite delay x(t) = −a(t)x(t) + (Q(t, x(t− g(t))))) + ∫ t −∞ D (t, u) f (x(u)) ∆u, t ∈ T, has a periodic solution. Under a slightly more stringent inequality we show that the periodic solution is unique using the contraction mapping principle. Also, by the...

متن کامل

Existence of Periodic Solutions for a Second Order Nonlinear Neutral Functional Differential Equation

We study the existence of periodic solutions of the second order nonlinear neutral differential equation with variable delay x′′ (t) + p (t)x′ (t) + q (t)h (x (t)) = c (t)x′ (t− τ (t)) + f (t, x (t− τ (t))) . We invert the given equation to obtain an integral, but equivalent, equation from which we define a fixed point mapping written as a sum of a large contraction and a compact map. We show t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013